| Id | Town | Player | X | Y | Town score ▾ | Player score | Ally | Distance | 
| 11634 | Taita városa 17 | Taita | 489 | 483 | 5010 | 114730 | Jack Daniels | 20.2 | 
| 11557 | Taita városa 3 | Taita | 482 | 481 | 5041 | 114730 | Jack Daniels | 26.2 | 
| 11556 | Taita városa 2 | Taita | 487 | 476 | 5179 | 114730 | Jack Daniels | 27.3 | 
| 11677 | Taita városa 21 | Taita | 487 | 476 | 5474 | 114730 | Jack Daniels | 27.3 | 
| 636 | Keita városa ![]()  | sydy3400 | 519 | 491 | 10102 | 197381 | Sherwoodi Cimborák | 21.0 | 
| 658 | sydy városa ![]()  | sydy3400 | 519 | 491 | 12005 | 197381 | Sherwoodi Cimborák | 21.0 | 
| 816 | hahó | Gordianus Tyrannos | 528 | 486 | 12476 | 139472 | Sherwoodi Cimborák | 31.3 | 
Players list: Taita; sydy3400; Gordianus Tyrannos
              
              BBCode:
[town]11634[/town] 5010pts [player]Taita[/player] 489/483 20.2
[town]11557[/town] 5041pts [player]Taita[/player] 482/481 26.2
[town]11556[/town] 5179pts [player]Taita[/player] 487/476 27.3
[town]11677[/town] 5474pts [player]Taita[/player] 487/476 27.3
[town]636[/town] 10102pts [player]sydy3400[/player] 519/491 21.0
[town]658[/town] 12005pts [player]sydy3400[/player] 519/491 21.0
[town]816[/town] 12476pts [player]Gordianus Tyrannos[/player] 528/486 31.3
              
              [town]11634[/town] 5010pts [player]Taita[/player] 489/483 20.2
[town]11557[/town] 5041pts [player]Taita[/player] 482/481 26.2
[town]11556[/town] 5179pts [player]Taita[/player] 487/476 27.3
[town]11677[/town] 5474pts [player]Taita[/player] 487/476 27.3
[town]636[/town] 10102pts [player]sydy3400[/player] 519/491 21.0
[town]658[/town] 12005pts [player]sydy3400[/player] 519/491 21.0
[town]816[/town] 12476pts [player]Gordianus Tyrannos[/player] 528/486 31.3
 = This player has only one town so his academy might not be well developed.
 = This player has lost some points during the last week and may be inactive.
 = This player is inactive or in vacation mode.
Note: The "radius" of search is "square", so if X = 400 and Y = 500, for a radius of 10, the search will take place in a square area with X between 390 and 410 and Y between 490 and 510. Consequently, a radius of 50, covers a whole sea.